Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs

نویسندگان

  • Flavia Bonomo
  • Maria Chudnovsky
  • Guillermo Durán
چکیده

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction, that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph ofG. The list of minimal forbidden induced subgraphs for the class of clique-perf...

متن کامل

The Structure of Claw-Free Perfect Graphs

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation. How...

متن کامل

Graph classes and Ramsey numbers

For a graph class G and any two positive integers i and j, the Ramsey number RG(i, j) is the smallest positive integer such that every graph in G on at least RG(i, j) vertices has a clique of size i or an independent set of size j. For the class of all graphs, Ramsey numbers are notoriously hard to determine, and they are known only for very small values of i and j. Even if we restrict G to be ...

متن کامل

Partial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs

A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The...

متن کامل

Claw-free circular-perfect graphs

The circular chromatic number of a graph is a well-studied refinement of the chromatic number. Circular-perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw-free circular-perfect graphs. First we prove that ifG is a connected claw-free circular-perfect graph with χ(G) > ω(G), then min{α(G), ω(G)} = 2. We use this resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008